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How to

find the
director

profile
In a
sample
of LC ?

Pate 1 A droplet of cholesteric liquid crystal exhibiting the hues of a changeable silk.
W8ee Figure 1.1, p.3)

Mate 2 Liquid crystal sample in a test-tube, warmed from room temperature. Samples
2lelt 1o right. The sample starts cloudy, develops a region in which it is clear, with the
dilerface between the two regions advancing until the whole sample is clear. On cooling,
e process is reversed. (See Figure 2.2, p.19)



This is just a
computer model

The images are generated by assuming that liquid crystal molecules can be
represented by ellipsoids, and then allowing them to interact with intermolecular
forces that model the interactions we now believe to be responsible for the
formation of liquid crystals. Above left is the computer-calculated image of a

NLC- and right of a S,LC structure



And this
IS a
model
too

. The images above are, of course, not of real molecules.

.~ However, using a modern technique known as scanning tunnelling microscopy.
* itis possible to generate images of real molecules. Friedel, and indeed Lehmann

-;' and Vorlander, would have been amazed to see a picture of liquid crystal mol-

~ ecules organizing in a paralle! fashion, just as expected in a liquid crystal phase.

Left a Crystal, right an isotropic L structure




And we
have to be
sure to be
above the
melting
point
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Crystalllzatlon (Ieft) at the temperature 51 4 °C
during cooling of eth-3 (S. Torgova, LC Lab,
Poli TO)



And far from
any
transition,
even from
an
alignment
transition

(here from
smectic A
not
homeotropic
to a
homeotropic
one

—

Transition at temperature 75.0 °C during
heating of eth-3 (S. Torgova, LC Lab, Poli TQ)




If we have
to deal with
a NLC, we
want to
know Its
director
profile. Here
the black
field
between
crossed
polarizers
ensures us
that the
orientation
S...

NLC (homeotropic) at temperatuire 77.5°C during
heating of eth-5 (S. Torgova, LC Lab, Poli TO)




But pay attention: the homeotropic alignment in the
previous picture is only outside of the circles!

Inside there is nothing, the sample is empty



To predict the equilibrium director profile in certain
given circumstances, it is necessary to introduce the
concept of Free energy, and Free energy density

And to work on them, without
been afraid by Mathematics



2.1. Free energy density
and stationary state
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2.1.1. Free energy

Definition

F=U-1T5 (1

where

U is the total potential energy of fields acting on the system,
T'is the thermodinamic temperature of system,

S is the system entropy

In International Measurement System S| we have ,
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Only if the system is homogeneous the free energy
density is constant in every point of the system

dF
dVv

[ =

where V is the system volume.

In S| itis

12



During a thermodynamic elemental reversible transform
dFf =dU — 8dT -1dS$ ®)

If the transform is isothermal and can be considered
Isentropic, then the only contribution to free energy is given
by potential energy of the interacting fields:

dFf =dU (4)

13



2.1.2. Functionals with fixed border

Let F be the NLC cell free energy, and fthe free energy
density. It is esplicit continuous function of z, and the director
tilt angle 6 as well, with its 1 ° derivative.

z2
F(0.6")= [ f(2.6(2).0 (2))dz 5)
A Z 9§Z) zl
A— 'z,=d/2  Here an electric field is
0 P// N shown as source of
d [x© / ' =y distortion.
 Z4=-d/2

The red line is the distorted director profile 14



The free energy F(6,0)) , regarded as function of 6(z) and 6°(z),
Is called a functional in the Dominion z,-z,:

The free energy density {z,6,8) must be posed

0(z) (and consequently 6°(z)) is unknown,
and has to be found.

Mark that in Sl itis ,
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The idea is to look for actual profile in the ensemble of the
virtual director lines 6,(z) having tangent lines 6,'(z) among
which the actual profile 6 (z) characterized by the actual 6°(2)
arises, providing the functional F to be extremal.

Now, 6, (z) are curves ¢-close of 0-order to 6(z) such as
‘9+(z) —H(Z)‘ < &, 0',(z) are e-close of 1st order such as

0.'(2)—0 ()| <&

0,(2) ¢
6(2)




Let us suppose that the boundary conditions at the estreme
of the Dominion have fixed values 6(z,)=6,, 6(z,)= 6,

A functional F has a relative extremal if on the curve 6(z) it

has a value either always greater (MAX) or always smaller
(min) than

on every curve 0 ,(z) e-close to 6(z)

This is the recipe for calculating 6(z)

17




2.1.3. Euler-Lagrange (E-L) eq. with fixed
boundary conditions.

Let us define a continuous finite function n(z) going to zero at
the dominion extremes, such as

0.(z)=06(z)+on(z) (6)
where a<<1 1s a small real number. Then

H+(Z1,2) — 9(21,2) (7)

at the boundary.
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Then the free energy by substituting (6) into def.(5) is a
function of a:

F(a)= | f1z,0(2) + an(2),6'(2) + an' (2)¥dz

0, (z) 6, (2)

being extremal for a=0. Hence F'(Of)‘azo =0

Deriving F with respect to a, we get

F'(@),_,=0= [[f,1(2) +f,.77'(2))dz

df
dé

_|_

Mark that Jo. =

(10)
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Re-writing the 1°integral and integrating per part the 2°
integral with differental factor 7'(z)dz , we obtain:

IU(Z)_fe dz ()

0= j f(2)dz +f,

The 2°term is identically zero, then

z2
[m() £y == f, tdz =0 (12
zl

20



and thus the 1-dimension Euler-Lagrange eq. is obtained:

d
—— f =0
Jo=g, 1o

(13)

with boundary conditions

(9(z,) =6,
0(z,) =06,

(14)
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2.1.4. Mechanism of interaction between
NLC cell and applied fields

2.1.4.1. Basic principles

The free energy of a liquid crystal system can be treated via
the classical procedure of extremalization, with the aim of
obtaining the equilibrium configuration of the director in the
whole volume, provided the fields acting, the elasticity of the
material and the boundary conditions are known.

22



NLC molecules do not possess permanent electric dipoles,
then an electric field creates induced dipoles, and acts on
them modifying the molecular (mlc) orientation.

The parallel (1) and normal (+) components of the induced
dipole depend on the mic structure. Accordingly, some NLC
have mic with induced electric dipole essentially 1 with respect
to the mic long axis (positive dielectric anisotropy ¢,), other
NLC have induced dipoles essentially - (negative ¢,).

Moreover, NLC exhibit induced magnetic dipoles too,
usually n with respect to the mic long axes (but they can be L
as well). Thus, NLC are characterized by a magnetic
susceptibility anisotropy x .., (either positive or negative), and

a magnetic field can orient the mic via such induced dipoles.
23



1.4.2. Homeotropic NLC cell

Let us consider a NLC cell with HOMEOTROPIC alignment

7 A
T T 1‘ R If the permittivity
1‘ 1‘ T NH anisotropy ¢, >0,
X
= an electric field normal to the cell plates
E stabilizes the homeotropic orientation of the

NLC director

On the contrary, if e, <0 T—>



The same field £ destabilizes the
homeotropic alignment

And we have already told that it is a threshold
phenomenon (Frederiks transition)

In the following, we will demonstrate
this behaviour

25



Interaction of homeotropic NEMATICS with electric field

Frederiks transition: NLC with ¢,<0, NLC-cell with homeotropic
alignment and strong anchoring: elastic distortion above a threshold.

B p M

+ 1 i E>E,

Y @%:» y é;i s
* X
O<E<E,
T | K
E RS = Strong anchoring implies homeotropic
d E |E alignment at the surfaces also in the
o a
presence of field

26




The compound

N-(4-Methoxybenzylidene)-4-butylaniline (MBBA) ,
achieved 1969 by Hans Kelker (Hoescht)

CH,0 CH=—N

presents nematic phase at room
temperature, and exhibits £, < 0

C,H,

27



2.1.5. Demonstrating the splay-bend elastic
free energy density

Let us consider a Nematic Liquid Crystal (NLC) with negative
dielectric anisotropy ¢,, in a homeotropic cell.

If E>Eth, a distortion arises dependent only on one co-ordinate,
z = the direction normal to the cell plates

A Z 9$Z)

— — 'Z,=d/2
O P] AE

24=-d/2

The director profile (picted in red) due to the presence of
an electric field E | z—axis has to be calculated

28



Data:

1. NLC: MBBA, negative dielectric anisotropy €, = 8” —£ <0
, three Dbulk elastic constants (K4, Ky, Kss);

Mark that in S| the elastic constants are measured in Newton,

Constant electric field E normal to the cell plate, i.e. n z-axis; E
can be preselected and adjusted during the experiment;

Cell thickness d=10um ;
Initial alignment homeotropic, i.e. 6(z)=0 everywhere Y7z ;

Surface treatment for having distortion only in [yz]-plane;
Strong boundary condition: 6,=0, 6,=0.

Let us derive the free energy density. for the material in the
cell. 29



The red line represents the director profile, which tangent is
locally parallel to the director n

6 6/.
A Z }Z) | /n
0 P/ £E

d mxO / ' —> ) P(2)
24=-d/2

In the absence of E , the director profile is uniform and normal
to the cell plates

E can induce a distortion in the [v,z] plane, then

ﬁz}sin9+%cosﬁ (14) %



The free energy density of splay is

1 1 1

7 EEKH(divﬁ)z =K (-sin0-0)" =K sin’0-6" (19
For twist, It IS zero, since:
1 . .
f, = EKzz (n-rotn)” (16)
and ; } &
- d :
rotn=[0 O — |=—icos@ -6 (17)
07
O sin@d cosé

—

being normalto n 3



The free energy density for bend is

> — - 12
| | ] j k
fn 551{33(Z><1‘0t;z)2 :51{33 0 sinf cosf| =
—-cos@-68 O 0
1 12 2 2 .+ 2 1 12 2
=—K,.0'" cos”B(cos" @ +sin“0)=—K,,0"cos" 8 (18)
2 2

We will show that the free energy density due to electric
interaction, if NLC is an insulator and the field £ is applied by
an external power supply is given by

fr= —lggga (E-n)’ = 180

E*cos’ @ (19)
2 2

32
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where the dielectric anisotropy €, for MBBA is negative.

Mark that in S g, Is the vacuum permittivity and it is ,

Hence the total free energy density is given by

f = %[H “(K,,sin” @+ K, cos” 0)+ £ |e,|[E* cos’ 9] (20)

861

and the functional, which extremalization process has to be
performed to find the actual profile 6(z)

IS the total free energy
d/?2

F= [f16(2),6'(2)ldz @

—d/2 Mark that in SI (21) gives
alfredo.strigazzi@polits.it
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2.2.1. Demonstrating the free energy density
of the interaction NLC- E

Let us demonstrate now why the interaction NLC- £ can be
written as in (19) — in the frame of International Measurement
ystem

Je = _%goé‘a (E - n)’ (19)

where ¢,= 8.8510-'2F/m (=Faraday/meter) is the vacuum
permittivity, and the permittivity anisotropy=electric
susceptibility anisotropy is

8@ = EH _gJ_ — ZeH _ZeJ_ = Zea (19')

Mark that £ in S| is measured in Volt/meter: whereas
€,Land X,, 1L are pure numbers. Then in (19) . ,




If NLC is a perfect insulator the applied E induces only an
electric polarization (electric dipole moment per unit volume):

E (20-)

NII

P=

Mark that in S| the polarization Pis measured in
Coulomb/square meter, i.e.

P can be also not 1 with respectto £ , being the electric
susceptibility v, @ 3x3 matrix, which elements are



that is diagonal due to symmetry

N
i

,

\

ZeJ_ O O \
O ZeJ_ O
00y,

The electric displacement is then

—_

D=¢ E

g oF

(21-)

(22-)

Mark that in S| the displacement D is measured in C/m?, like
the polarization P as well:



Note that in (22-) due to (20-) the relative permittivity matrix is
given by

_EE7+Z€ (23')

being { the unit matrix.

This means that the relative permittivity matrix writes

(e, 0 0
E = O 8J_ O 0 gHvJ— — 1 + ZeH,J_ (24_)
0 0 g,

Writing more conveniently, in order to put in evidence the

dielectric anisotropy dependence of the electric displacement
3}



we choose a local reference frame [x,,y,,Z,] such as the mic
director reads n, =k, .Hence, from

-

DxO — 808J_Ex0

Y

DZO — gogH EZO

5D S €0€J_Ey0 (25-)

\

the electric displacement eventually writes:

D — 80[8J_Ex0i0 +€J_Ey0j0 +(€‘H Ezono _gJ_EZOnO +€lEZOI/l0]:

:80[£L§+€a(§-50) Zo] (26-)



Which means, for every director orientation:
D=8A€LE+Sa( n) nJ (27-)

It's evident that the displacement is in general not 11 to the
field: the polarizing back-effect on the imposed field is
important, due to the NLC properties.

Calculating the electric free energy density

E
fe=-|D-dE (28-)
0



and finally

= — 1 I -
f, = _ED E = —5505LE2 —Eeoea(E -n)’ (29-)

It is possible to neglect the term which is independent of
the director alignment, then

L. == I E.-n
fe=—S€L(En =—"ex, (E-n" (30




|.Let us remark that Maxwell eq.s without charge carriers

have to be satisfied, i.e.
4 —_—

divD =0
rotE = 0

(31-)

Il. Remember that in Gaussian System (GS) eq. (20-, 22- and

30-) write DIFFERENTLY:

—_ 2=

P:;(j

D=E+47P=¢E

(20-G)

(22-G)



Je = : 861(5';{)2
ST

Since in the vacuum permittivity is set as
, &,=1,then E, P, D, In have the same
dimensions

[E] = [P] = [D] = statV/cm, even if people prefer for the
polarization to indicate [P] = statC/cm?, which is the same.

10



Ill. As a consequence, &, surprisingly has the same
numerical value in both and

But not x., , since eq.
D=FE+4nP=¢ckE
implies -
E=1+4ny

ST GS
Hence Zea o 4nZea

(23--)

11



The electric susceptibility anisotropy x..
DOES NOT HAVE the same numerical value

: this is a source of mistakes made

by some valuable scientists!

IV. For nematic MBBA at 25°C itis £,=-0.7 < 0

V. For nematic 5CB at 24 + 34°Citise,=8 +11 >0

12



We have seen in 2.1 that the total free energy density (elastic
and electric) is given by

f:%[é’ " (K, sin" @+ Ky, cos” 0) + &, Ezcoszg] (20)

861

and the functional which the actual profile 6(z) renders
extremal is the total free energy

d/?2

F= [16(2),0 (2)ldz @

13



2.2.2. E-L eqg. with fixed boundary condition

for this homeotropic cell

Jo Jo =0 (13)

From E-L eq. (13) , calculating the derivatives fyand dfy/dz
we get

1[9 * (2K, si E*2cos@sin H]—

33

- %[@ 2(K, - K (22)

and
14



dizfa =0" (K, sin” @+ K ,, cos’ 0) (23)
Combining (22), (23) we get
0" (K, sin’ @+ K., cos” 0) +

E?}sin26 =0 (24)

gCl

L5
+§[_6’ 2(Kn —Ky) t+€,

Eqg. (24) shows the presence of a threshold. In fact, if 8 -0 also
6 —0, then (24) reads:

E’0=0 (29)

15

0'K,,+¢€

g(l



2.2.3. Threshold for bend electric Frederiks
transition with strong anchoring.

Eq. (25) becomes the pendulum canonic eq.:

6"+k,’6=0 (26)

where kH :\/80 ga E (27)
K33

Then the arising distortion is harmonic, and the boundary
conditions (strong anchoring) imply

6 =6 cosk,z (28)

being the cell thickness d = A/2 .

16



79/#
" Z
yz O A

P(2) '2,= d/2
0 Pl 4 \
d —x0O - 0

" / o(2)
24=-d/2

then k.d=m (29)

gives the critical field for the arising of the bend electric
Frederiks transition in homeotropic NLC cells with £,<0

Ecrit — T[\/ K33 (30)
d\ €le

o a

[y

17




We note that the threshold has been found inversely
proportional to the cell thickness (Fredericks, late 1920ths).
Then it is possible to introduce the critical voltage applied to
the cell

K,
E |E

o a

(30°)

The relevant MBBA data are K;; = 7.5*102N, ¢,=-0.7 . The
vacuum permittivity is £, = 8.85"10-'2. Let be the cell thickness
d=10 ym.

We obtain V., = 3.46 V and E.., = 3.46*105 V/m= 0.346 V/um

18



2.2.4. Pay attention to Gaussian System!

Should we appreciate GS, as many physicists do (if they are
theoreticians), we would have found instead of (30) the result
4nK
Vcrit =T =
ga

where to put K;,=7.5*107 dyn , ¢, = -0.7 (the same value as
in S1), obtaining

V.= 1.1523*102 statV

and, since 1 statV = 10|c| V, being |c| = 2.998*108 the value
in S| of the light speed in vacuum, eventually getting

V_,=3.46V
alfredo.strigazzi@politd.it
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2.3.1. Demonstrating the free energy density
of the interaction NLC- Magnetic field 7

Let us look now for the form of the free energy density
relevant to the interaction NLC-magnetic field — in the frame
of S| of measurement, :

Usually NLC are diamagnetic, then the applied magnetic field H |
due to the mic anisotropy providing 1 and - susceptibilities x, and
XL

induces into the NLC material only a weak magnetization
(magnetic dipole moment per unit volume):

M = ;{mH (20+)

Comparing with (20-), mark that here the measuring unit of M
and H are the same. In Sl it is . 5



In (20+), as in the case of electric field polarization, the
magnetic susceptibility is a 3x3 matrix, and then the
magnetization M can be not u with respect to the
magnetizing field H

In any case due to symmetry £, writes

O (21 +)

xR |
3

Il
-
2
—

and its elements are



As a result, NLC is affected by the magnetic induction field
given by

B=u,(H+M)=p,uH 224

Mark that B in S| is measured in Tesla:

In (22+) the constant y,= 410" H/m (= Henry/meter) is the
vacuum permeability, and the permeability matrix U IS
stated as:

I+, (23+)

I

being { the unit matrix.



As a conclusion, we get

(u, 0 0
ﬂ — O ‘LlJ_ O 0 ﬂHaJ— — 1 + ZmH,J_ (24+)
00

and the permeability anisotropy=magnetic susceptibility

anisotropy is reported as

ILla = II’lH _ll’lJ_ — ZmH _ZmJ_ = Zma (19+)



Discussing in the same way as in the case of NLC-electric
interaction, we will put in evidence the permeabillity
anisotropy dependence of the induction field B

We choose a local reference frame [x,,y,,z,] such as the mic
director reads n, =k, .Hence, from

on — ll’loltlJ_on
) Byo — ﬂoﬂJ_Hyo (25+)
LBZO — ll’loll’ﬂ‘ Hzo




the magnetic induction field eventually writes:

B= U LULHXO;O +ﬂJ_Hy0_J).0 TH HZO;;O _,ULHZO;;O +ﬂLHz0ZOJ:
— | H +w d ) 7] (26+)

which means, for every director orientation:

E:,UOLULﬁﬂua(ﬁ-Z) ;zJ (27+)

It's evident that the magnetic induction B is in general not 1 to
the field H



Calculating the magnetic free energy density

H
fH=—jB-dH (28+)
0
we get
l—- — 1 ;1 — -
fau=—oB-H=—Zppu H ——ppu,(H-n)" @

It is possible to neglect the term which is independent of
the director alignment, then

1 —
fu = —Eﬂoﬂa(H -n)’ (30+)

Mark that £, in S| is measured in 8



Comparing (30+) with (30-), we realize that the magnetic free

energy density corresponds in Sl to the electric one just

substituting

"EE, =E N, WIth L, =1y, .

and E with H"

(31)



|.Let us remark that Maxwell eq.s have to be satisfied, i.e.

divB =0
\rotﬁ =0

(31+)

Il. Remember that in Gaussian System (GS) eq. (30+) writes

fn

(H -n)*

—Elma

(30-G)

since in GS the vacuum permeability is set /,=1. Moreover,

[H] = Oe (=Oersted) and [# ] = erg/cm?

10



lll. As a consequence of point |l., the magnetic susceptibility
anisotropy x,, DOES NOT HAVE the same numerical value

. this is a source of mistakes made by
many valuable scientists!

SI GS
z ma 475% ma

Recommended Recipe: Always use Sl !

IV. For nematic MBBA at 19°C it is x,= 1.55-10in
but x, =1.23:10"7in

V. For nematic 5CB at 26°C it is x,= 1.43:10° in
but x,=1.14107 in

11



2.3.2. E-L eqg. with fixed boundary condition
for a unidirectional planar cell

Let us consider the NLC 5CB, having positive dielectric
anisotropy, filling a cell with initial alignment unidirectional
planar along y-axis

A Z
_%; 'Z,=d/2
P A2)=0
d 9)#0 § >
= 2= -d/2

and strong anchoring: &, =%(z,)=0, %, =%(z,)=0, &
being the angle between the director and y-axis. 2




The compound

5CB: 4amylcyanobiphenyl, achieved
1972 by George Gray, Univ of Hull

C5H11

presents nematic phase at room
temperature, and exhibits £, > 0

CN

13



By applying a magnetic field H normal to the cell plates

A Z

p
0 7

d mx© 7 Y
/ -
24=-d/2

/
/{/79(2) 'Z,=d/2
— >

the director is, as already stated:

Zz}'coszﬂ+l;sin29 (14°)

14



The interaction free energy density between magnetic field
and director reads

fH — _%ﬂozma (ﬁ . ;;)2 — _%ﬂOZmaHz Sin2 29 (20*)

Comparing (20%) with (20°), we remember here that the

magnetic free energy density corresponds to the electric one
just substituting

'ee =€ . with g u =u y ~ and E with H"| (31)

the same geometry providing the same Gtrigonometric function,

. . . . 15
whereas the elastic contribution remains unchanged.



This means that the total free energy density is

f = %[ﬁ " (K cos” 9+ Ky, sin® ) +u, 7, H sin’ 79] (207°)

and consequently the E-L eq. is

— 0" (K, cos’ ¥+ K, sin’ 1) +

i % [_ Ch (=K, + Ky3) _ﬂOZmaHzl sin26=0 (24°)

with strong anchoring unidirectional planar boundary
conditions.

16



2.3.3. Threshold for splay magnetic
Frederiks transition with strong anchoring

Linearizing close to the threshold, when £ -0 also &’ —0, then
(24°) reads:

ﬁHKll + ﬂoZmaszg — O (25*)
becoming the canonic pendulum eq.:

3'+h," =0 (26%)

where
hP — \/ﬂalma H (27*)
Kn

17



Then the arising distortion is as usual harmonic, and the
boundary conditions (strong anchoring) imply

=1 cos h,z (287)

being the cell thickness d = A/2 .
(o

A Z P

Z
/ A
2 'z2,=d/2
0 % 2 2 \
i /
24=-d/2

A2)

18




Finally,

h,d

Tt

(297)

gives the critical field for the arising of the magnetic Frederiks
transition (1st one discovered, 1927) in unidirectional planar

NLC cells

Crit

7T

Kll

d

J

ﬂOZma

(30%)

19



We note that, as for electric field, the magnetic threshold has
been found inversely proportional to the cell thickness

Hcrit — Tc\/ Kll (30*,)
d IL[OZma

The relevant 5CB data are K,; = 6.2*10-"2N, x,..= 1.43"10° .
The vacuum permeability is p, = 410",

Let be the cell thickness d =10 um.

We obtain H,, = 5.835*105 A/m = 0.5835 A/um

20



2.3.4. Always pay attention to Gaussian System!

What about ? Dealing with it, we would have found instead
of (30%) the result

T | K,

crit
d Z ma

where to put K;,=6.2*107dyn , x,,, = 1.14"107 ( the
same value as in S|, but that one shared by 41r), with the
same cell thickness obtaining

H..= 3.25*103 Oe

and, since 1 Oe :4%103é , eventually getting the same
7T m

result as found before Iin

(provided you didn’t do some mistake)):
21

H.,=0.5830 A/um alfredo.strigazzi@polito.it



2.1. Conclusions

*The extremal of a LC-cell free energy determines
the Euler-Lagrange eq.

*Solving E-L eq. it gets the director profile

*The elastic free energy density of a homeotropic
NLC cell with in-plane distortion involves splay and
bend



2.2. Conclusions

*A homeotropic NLC cell undergoes an electric Frederik
transition with field normal to the cell plates only if the NLC
has permittivity anisotropy ¢, < 0

*The interaction NLC-electric field involves a free energy
density quadratic with the field

*The threshold of Frederiks transition in a homeotropic
NLC cell is determined by the bend elastic constant

*Always use the International System of measurement (S!)



2.3. Conclusions

A unidirectional planar NLC cell undergoes a magnetic
Frederik transition with field normal to the cell plates only if
the NLC has permeability anisotropy u, > 0

*The interaction NLC-magnetic field involves a free energy
density quadratic with the field (like the interaction with
electric field as well)

Mark the logic symmetry between magnetic and electric
field:

‘ee =gy, with u u =u y ~ and E with H"

*The threshold of Frederiks transition in a unidirectional
planar NLC cell is determined by the splay elastic constant

*Forget using the Gaussian System of measurement (GS),
especially when dealing with magnetism ! 3
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