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2nd Lecture 

2.0 EQUILIBRIUM DIRECTOR 
PROFILE WITH APPLIED FIELDS
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How to 

find the 

director 

profile 

in a 

sample 

of LC ?
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This is just a 

computer model

NLC- and right of a SALC structure
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And this 

is a 

model 

too

Left a Crystal, right an isotropic L structure
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And we 

have to be 

sure to be 

above the 

melting 

point

Crystallization (left) at the temperature 51.4 °°°°C 
during cooling of eth-3 (S. Torgova, LC Lab, 
Poli TO)
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And far from 

any  

transition, 

even from 

an 

alignment 

transition 

(here from 

smectic A 

not 

homeotropic

to a 

homeotropic

one 
Transition at temperature 75.0 °°°°C during 
heating of eth-3 (S. Torgova, LC Lab, Poli TO)



7NLC (homeotropic) at temperatuire 77.5°°°°C  during 
heating of eth-5 (S. Torgova, LC Lab, Poli TO)

If we have 

to deal with 

a NLC, we 

want to 

know its 

director 

profile. Here 

the black 

field 

between 

crossed 

polarizers 

ensures us 

that the 

orientation 

is…
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But pay attention: the homeotropic alignment in the 

previous picture is only outside of the circles! 

Inside there is nothing, the sample is empty 
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To predict the equilibrium director profile in certain 

given circumstances, it is necessary to introduce the 

concept of Free energy, and Free energy density

And to work on them, without 

been afraid by Mathematics
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2.1. Free energy density 

and stationary state
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2.1.1. Free energy

where

U is the total potential energy of fields acting on the system, 

T is the thermodinamic temperature of system,

S is the system entropy

TSUF −≡ (1)

In International Measurement System SI we have [F]=[U]= J ,

[T] = K , [S] = J/K

Definition
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Only if the system is homogeneous the free energy
density is constant in every point of the system

V

F
f

d

d
≡ (2)

where V is the system volume. 

In SI it is [f] = J/m3.
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During a thermodynamic elemental reversible transform

STTSUF dddd −−= (3)

If the transform is isothermal and can be considered

isentropic, then the only contribution to free energy is given

by potential energy of the interacting fields:

UF dd = (4)
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2.1.2. Functionals with fixed border

Let F be the NLC cell free energy, and f the free energy

density. It is esplicit continuous function of z, and the director

tilt angle θ as well, with its 1°derivative. 

∫=
2

1

d))('),(,()',(

z

z

zzzzfF θθθθ (5)

z

y☉xd

θ(z)

0

z1= -d/2

z2= d/2
P E

Here an electric field is 

shown as source of 

distortion. 

The red line is the distorted director profile
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The free energy F(θ,θ’) , regarded as function of θ(z) and θ’(z), 

is called a functional in the Dominion z1-z2 :

θ(z) (and consequently θ’(z)) is unknown, 

and has to be found.

Mark that in SI it is [z] = m, [θ] = rad .

The  free energy density f(z,θ,θ’) must be posed
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Now, θ+(z) are curves ε-close of 0-order to θ(z) such as

, θ’+(z) are ε-close of 1st order such asεθθ <−+ )()( zz

εθθ <−+ )(')(' zz

The idea is to look for actual profile in the ensemble of the 

virtual director lines θ+(z) having tangent lines θ+’(z) among

which the actual profile θ (z) characterized by the actual θ’(z) 

arises, providing the functional F to be extremal.

θ+(z)

θ(z)

z
z2z1

O
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Let us suppose that the boundary conditions at the estreme 

of the Dominion have fixed values θ(z1)= θ1 , θ(z2)= θ2 .

A functional F has a relative extremal if on the curve θ(z) it

has a value either always greater (MAX) or always smaller

(min) than

on every curve θ+(z) ε-close to θ(z) 

This is the recipe for calculating θ(z) 
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2.1.3. Euler-Lagrange (E-L) eq. with fixed 

boundary conditions.

Let us define a continuous finite function η(z) going to zero at 

the dominion extremes, such as

)()()( zzz αηθθ +=+
(6)

where α<<1 is a small real number. Then

)()( 2,12,1 zz θθ =+
(7)

at the boundary.
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Then the free energy by substituting (6) into def.(5) is a 

function of α:

zzzzzzfF

z

z
zz

d])(')(',)()(,[)(

2

1
)()( '

∫
+

+

++=
44 344 214434421

θθ

αηθαηθα (8)

being extremal for α=0. Hence 0)('
0

=
=α

αF (9) 

Deriving F with respect to α, we get

zzfzfF

z

z

d)](')([0)(' '

2

1

0
ηηα θθα ++= ∫ +== (10)

Mark that
+

+ ≡
θ

θ
d

df
f
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Re-writing the 1°integral and integrating per part the 2°

integral with differental factor , we obtain: zz d)('η

zf
z

zzfzzf

z

z

z

z

z

z

d
d

d
)()(d)(0 '

2

1

2

1'

2

1

θθθ ηηη ∫∫ −+= (11)

The 2°term is identically zero, then

0d
d

d
)(

2

1

' =








−∫ zf
z

fz

z

z

θθη (12)
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and thus the 1-dimension Euler-Lagrange eq. is obtained:

0
d

d
' =− θθ f

z
f (13)

with boundary conditions

(14)




=

=

22

11

)(

)(

θθ

θθ

z

z
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2.1.4. Mechanism of interaction between 
NLC cell and applied fields

The free energy of a liquid crystal system can be treated via 

the classical procedure of extremalization, with the aim of

obtaining the equilibrium configuration of the director in the 

whole volume, provided the fields acting, the elasticity of the 

material and the boundary conditions are known.

2.1.4.1. Basic principles
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NLC molecules do not possess permanent electric dipoles, 
then an electric field creates induced dipoles, and acts on 

them modifying the molecular (mlc) orientation. 

The parallel ( � ) and normal (┴) components of the induced 

dipole depend on the mlc structure. Accordingly, some NLC 

have mlc with induced electric dipole essentially  � with respect

to the mlc long axis (positive dielectric anisotropy εa), other

NLC have induced dipoles essentially ┴ (negative εa).

Moreover, NLC exhibit induced magnetic dipoles too,

usually  � with respect to the mlc long axes (but they can be ┴
as well). Thus, NLC are characterized by a magnetic

susceptibility anisotropy χma (either positive or negative), and 

a magnetic field can orient the mlc via such induced dipoles.
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y

x

z

Hn

Let us consider a NLC cell with HOMEOTROPIC alignment

an electric field normal to the cell plates 

stabilizes the homeotropic orientation of the 

NLC director 

E

If the permittivity 

anisotropy εa >0 ,

On the contrary, if εa <0 

1.4.2. Homeotropic NLC cell
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The same field          destabilizes the 

homeotropic alignment

E

And we have already told that it is a threshold 

phenomenon (Frederiks transition)

In the following, we will demonstrate 

this behaviour
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 1 

Strong anchoring implies homeotropic 

alignment at the surfaces also in the 

presence of field 

θMAX 

y 
 

x 

z 

thEE >
 

thEE <≤0
 

ao

th

K

d
E

εε

π 33=
 

Interaction of homeotropic NEMATICS with electric field  

 

Frederiks transition: NLC with εa<0, NLC-cell with homeotropic 

alignment and strong anchoring: elastic distortion above a threshold. 

Hn  

y 
 

x 

z 



27

CH
3
O CH N C

4
H

9

N-(4-Methoxybenzylidene)-4-butylaniline (MBBA) , 

achieved 1969 by Hans Kelker (Hoescht)

The compound

presents nematic phase at room 
temperature, and exhibits εa < 0
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Let us consider a Nematic Liquid Crystal (NLC) with negative 

dielectric anisotropy εa, in a homeotropic cell. 

If E>Eth, a distortion arises dependent only on one co-ordinate, 

z = the direction normal to the cell plates

The director profile (picted in red) due to the presence of

an electric field has to be calculatedaxis−zE

z

y☉xd

θ(z)

0

z1= -d/2

z2= d/2
P E

2.1.5. Demonstrating the splay-bend elastic 
free energy density
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Data:

Constant electric field E normal to the cell plate, i.e.  � z-axis; E 

can be preselected and adjusted during the experiment;

Strong boundary condition: θ1=0, θ2=0.

1. NLC: MBBA, negative dielectric anisotropy

,  three bulk elastic constants (K11, K22, K33);

0<−≡ ⊥εεεa

Initial alignment homeotropic, i.e. θ(z)=0 everywhere ;z∀

Cell thickness d=10µm ;

Surface treatment for having distortion only in [yz]-plane;

Let us derive the free energy density. for the material in the 

cell.

Mark that in SI the elastic constants are measured in Newton, 

[Kii] = N .
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z

y☉xd

θ(z)

0

z1= -d/2

z2= d/2
P E

In the absence of      , the director profile is uniform and normal 

to the cell plates

E

can induce a distortion in the [y,z] plane, thenE

The red line represents the director profile, which tangent is 

locally parallel to the director  n

n
θ

P(z)

θθ cossin kjn += (14)
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The free energy density of splay is 

22

11

2

11

2

11 'sin
2

1
)'sin(

2

1
)div(

2

1
θθθθ ⋅=⋅−=≡ KKnKfs

(15)

For twist, it is zero, since:

2

22 )rot(
2

1
nnKft ⋅≡ (16)

and

'cos

cossin0

00rot θθ

θθ

⋅−=
∂

∂
= i

z

kji

n (17)

being normal to       n
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The free energy density for bend is

θθθθθθ

θθ

θθ

22

33

2222

33

2

33

2

33

cos'
2

1
)sin(coscos'

2

1

00'cos

cossin0
2

1
)rot(

2

1

KK

kji

KnnKfB

=+=

=

⋅−

=×≡

(18)

We will show that the free energy density due to electric 

interaction, if NLC is an insulator and the field is applied by 

an external power supply is given by
E

θεεεε 222 cos
2

1
)(

2

1
EnEf aoaoE =⋅−= (19)
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where the dielectric anisotropy εa  for MBBA is negative.

Mark that in SI εo is the vacuum permittivity and it is [εo]= F/m , 

[E] = V/m.

[ ]θεεθθθ 222

33

2

11

2 cos)cossin('
2

1
EKKf ao++= (20)

and the functional, which extremalization process has to be

performed to find the actual profile θ(z) 

is the total free energy

∫
−

=
2/

2/

d)]('),([

d

d

zzzfF θθ (21)

Hence the total free energy density is given by

Mark that in SI (21) gives [F]= J/m2.

alfredo.strigazzi@polito.it
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2.2. Homeotropic cell with εa<0-NLC 
under Electric field normal 

to the cell plates

Alfredo Strigazzi, Senior Professor, Dept of Applied Science and 
Technology (DISAT), Politecnico di Torino, Torino, Italy

alfredo.strigazzi@polito.it

MEPhI, Moscow, 17 September 2014
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2
)(

2

1
nEf aoE ⋅−= εε (19)

Let us demonstrate now why the interaction NLC- can be 

written as in (19) – in the frame of International Measurement 

System SI :

E

where εo= 8.85.10-12 F/m (=Faraday/meter) is the vacuum

permittivity, and the permittivity anisotropy=electric

susceptibility anisotropy is

eaeea χχχεεε ≡−=−≡ ⊥⊥ (19-)

Mark that E in SI is measured in Volt/meter: [E] =V/m, whereas 

ε�,┴ and χe�,┴ are pure numbers. Then in (19) [fE] = J/m3.

2.2.1. Demonstrating the free energy density 
of the interaction NLC- E
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EIf NLC is a perfect insulator the applied        induces only an

electric  polarization (electric dipole moment per unit volume):

EP eo χε= (20-)

can be also not  � with respect to , being the electric

susceptibility a 3x3 matrix, which elements are pure 

numbers :  

E

eχ

P

Mark that in SI the polarization P is measured in 

Coulomb/square meter, i.e. [P] = C/m2=A.s/m2
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that is diagonal due to symmetry

















≡ ⊥

⊥

e

e

e

e

χ

χ

χ

χ

00

00

00

(21-)

The electric displacement is then 

EPED oo εεε =+= (22-)

Mark that in SI the displacement D is measured in C/m2, like 

the polarization P as well: [D] = C/m2.



5

This means that the relative permittivity matrix writes

⊥⊥⊥

⊥

+=

















=
,,

1,

00

00

00

e
χε

ε

ε

ε

ε (24-)

Writing more conveniently, in order to put in evidence the 

dielectric anisotropy dependence of the electric displacement

Note that in (22-) due to (20-) the relative permittivity matrix is 

given by

eI χε +≡ (23-)

being       the unit matrix.I
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we choose a local reference frame [xo,yo,zo] such as the mlc

director reads                  . Hence, fromoo kn ≡

the electric displacement eventually writes:









=

=

=

⊥

⊥

zoozo

yooyo

xooxo

ED

ED

ED

εε

εε

εε

(25-)

[ ]

( )[ ]ooao

ozoozoozooyooxoo

nnEE

nEnEnEjEiED

⋅+=

=+−++=

⊥

⊥⊥⊥⊥

εεε

εεεεεε

(26-)
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Which means, for every director orientation:

( )[ ]nnEED ao ⋅+= ⊥ εεε (27-)

It’s evident that the displacement is in general not  � to the 

field: the polarizing back-effect on the imposed field is

important, due to the NLC properties.

Calculating the electric free energy density

EDf

E

E d

0

⋅−= ∫ (28-)
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22
)(

2

1

2

1

2

1
nEEEDf aooE ⋅−−=⋅−= ⊥ εεεε

and finally

(29-)

It is possible to neglect the term which is independent of 

the director alignment, then

22
)(

2

1
)(

2

1
nEnEf eaoaoE ⋅−=⋅−= χεεε (30-)
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I.Let us remark that Maxwell eq.s without charge carriers 

have to be satisfied, i.e.





=

=

0rot

0div

E

D
(31-)

II. Remember that in Gaussian System (GS) eq. (20-, 22- and 

30-)  write DIFFERENTLY:

EPED επ =+= 4 (22-G)

EP eχ= (20-G)
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2
)(

8

1
nEf aE ⋅−= ε

π
(30-G)

Since in GS the vacuum permittivity is set as a pure 

number, εo=1, then E, P, D, in GS have the same 

dimensions

[E] = [P] = [D] = statV/cm, even if people prefer for the 

polarization to indicate [P] = statC/cm2, which is the same.
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III. As a consequence, εa surprisingly has the same

numerical value in both GS and SI.

But not χea , since eq. (22-G)

EPED ε=+= π4 (22-G)

implies

χε π41+= (23-G)

Hence 
GS

ea

SI

ea χχ π4= (23--)
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IV. For nematic MBBA at 25°C it is εa= -0.7 < 0

V. For nematic 5CB at 24 ÷ 34°C it is εa= 8 ÷ 11 > 0

The electric susceptibility anisotropy χea

DOES NOT HAVE the same numerical value

in both GS and SI : this is a source of mistakes made

by some valuable scientists!
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We have seen in 2.1 that the total free energy density (elastic

and electric) is given by

[ ]θεεθθθ 222

33

2

11

2
cos)cossin('

2

1
EKKf ao++= (20)

and the functional which the actual profile θ(z)  renders

extremal is the total free energy

∫
−

=

2/

2/

d)]('),([

d

d

zzzfF θθ (21)
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2.2.2. E-L eq. with fixed boundary condition 

for this homeotropic cell

0
d

d
' =− θθ f

z
f (13)

From E-L eq. (13) , calculating the derivatives fθ and dfθ’/dz

we get

and

[ ]

[ ] θεεθ

θθεεθθθθθθ

2sin)('
2

1

sincos2)sincos2cossin2('
2

1

2

3311

2

2

3311

2

EKK

EKKf

ao

ao

−−=

=−−=

(22)
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)cossin(''
d

d 2

33

2

11' θθθθ KKf
z

+= (23)

Combining (22), (23) we get

[ ] 02sin)('
2

1

)cossin(''

2

3311

2

2

33

2

11

=+−−+

++

θεεθ

θθθ

EKK

KK

ao
(24)

Eq. (24) shows the presence of a threshold. In fact, if θ →0 also

θ’ →0, then (24) reads:

0''
2

33 =+ θεεθ EK ao
(25)
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Eq. (25) becomes the pendulum canonic eq.:

where

0''
2

=+ θθ Hk (26)

E
K

k
ao

H

33

εε
≡ (27)

Then the arising distortion is harmonic, and the boundary 

conditions (strong anchoring) imply

zkHo cosθθ = (28)

being the cell thickness d = λ/2 .

2.2.3. Threshold for bend electric Frederiks
transition with strong anchoring.
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z

y☉xd

θ(z)

0

z1= -d/2

z2= d/2
P E

n
θ

P(z)

z

θ(z)
0

Then
π=dkH (29)

gives the critical field for the arising of the bend electric 

Frederiks transition in homeotropic NLC cells with εa<0

ao

crit

K
E

εε
33

d

π
= (30)
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The relevant MBBA data are K33 = 7.5*10-12N, εa = -0.7 . The 

vacuum permittivity is εo = 8.85*10-12. Let be the cell thickness

d = 10 µm. 

We note that the threshold has been found inversely 

proportional to the cell thickness (Fredericks, late 1920ths). 

Then it is possible to introduce the critical voltage applied to 

the cell

ao

crit

K
V

εε
33

π= (30’)

We obtain Vcrit = 3.46 V  and Ecrit = 3.46*105 V/m= 0.346 V/µm



19

Should we appreciate GS, as many physicists do (if they are 

theoreticians), we would have found instead of (30’) the result

a

crit

K
V

ε
33π4

π= (30”-G)

where to put K33=7.5*10-7 dyn , εa = -0.7 (the same value as

in SI), obtaining

Vcrit = 1.1523*10-2 statV

and, since 1 statV = 10-6|c| V, being |c| = 2.998*108 the value

in SI of the light speed in vacuum, eventually getting

Vcrit = 3.46 V
alfredo.strigazzi@polito.it

2.2.4. Pay attention to Gaussian System!
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2.3. Unidirectional planar cell with 
χma>0-NLC under Magnetic field 

normal to the cell plates

Alfredo Strigazzi, Senior Professor, Dept of Applied Science and 

Technology (DISAT), Politecnico di Torino, Torino, Italy

MEPhI, Moscow, 17 September 2014

alfredo.strigazzi@polito.it
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HUsually NLC are diamagnetic, then the applied magnetic field    , 

due to the mlc anisotropy providing  � and  ┴ susceptibilities χ � and 

χ┴

Let us look now for the form of the free energy density 

relevant to the interaction NLC-magnetic field – in the frame 

of SI of measurement, : 

HM mχ= (20+)

induces into the NLC material only a weak  magnetization 

(magnetic dipole moment per unit volume):

Comparing with (20-), mark that here the measuring unit of M

and H are the same. In SI, it is [M]=[H]=A/m.

2.3.1. Demonstrating the free energy density 
of the interaction NLC- Magnetic field H
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In (20+), as in the case of electric field polarization, the 

magnetic susceptibility is a 3x3 matrix, and then the 

magnetization        can be not   � with respect to the 

magnetizing field
M

H

In any case due to symmetry          writesmχ

















≡ ⊥

⊥

m

m

m

m

χ

χ

χ

χ

00

00

00

(21+)

and its elements are pure numbers
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As a result, NLC is affected by the magnetic induction field 

given by

HMHB oo µµµ =+= )( (22+)

Mark that B in SI is measured in Tesla: [B] = T.

being       the unit matrix.I

mI χµ +≡ (23+)

In (22+) the constant µo= 4π*10-7 H/m (= Henry/meter) is the 

vacuum permeability, and the permeability matrix is

stated as:
µ
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and the permeability anisotropy=magnetic susceptibility

anisotropy is reported as

As a conclusion, we get

mamma χχχµµµ ≡−=−≡ ⊥⊥ (19+)

⊥⊥⊥

⊥

+=

















=
,,

1,

00

00

00

m
χµ

µ

µ

µ

µ (24+)
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Discussing in the same way as in the case of NLC-electric 

interaction, we will put in evidence the permeability 

anisotropy dependence of the induction field B

We choose a local reference frame [xo,yo,zo] such as the mlc

director reads                  . Hence, fromoo kn ≡









=

=

=

⊥

⊥

zoozo

yooyo

xooxo

HB

HB

HB

µµ

µµ

µµ

(25+)
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the magnetic induction field eventually writes:

[ ]
( )[ ]ooao

ozoozoozooyooxoo

nnHH

nHnHnHjHiHB

⋅+=

=+−++=

⊥

⊥⊥⊥⊥

µµµ

µµµµµµ

(26+)

which means, for every director orientation:

( )[ ]nnHHB ao ⋅+= ⊥ µµµ (27+)

BIt’s evident that the magnetic induction     is in general not   � to

the field H
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Calculating the magnetic free energy density

2
)(

2

1
nHf aoH ⋅−= µµ

HBf

H

H d

0

⋅−= ∫ (28+)

It is possible to neglect the term which is independent of 

the director alignment, then

we get

22
)(

2

1

2

1

2

1
nHHHBf aooH ⋅−−=⋅−= ⊥ µµµµ (29+)

(30+)

Mark that fH in SI is measured in J/m3
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Comparing (30+) with (30-), we realize that the magnetic free 

energy density corresponds in SI to the electric one just 

substituting 

"withandwith" HEmaoaoeaoao χµµµχεεε == (31)
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I.Let us remark that Maxwell eq.s have to be satisfied, i.e.





=

=

0rot

0div

H

B
(31+)

II. Remember that in Gaussian System (GS) eq. (30+) writes

2
)(

2

1
nHf maH ⋅−= χ (30-G)

since in GS the vacuum permeability is set µo=1. Moreover,  

[H] = Oe (=Oersted) and [fH] = erg/cm3
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IV. For nematic MBBA at 19°C it is χa= 1.55.10-6 in SI 

but χa =1.23.10-7 in GS

V. For nematic 5CB at 26°C it is χa= 1.43.10-6 in SI 

but χa= 1.14.10-7 in GS

III. As a consequence  of point II., the magnetic susceptibility

anisotropy χma DOES NOT HAVE the same numerical value

in both GS and SI : this is a source of mistakes made by

many valuable scientists!

GS

ma

SI

ma χχ π4= (31-G)

Recommended Recipe: Always use SI !
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2.3.2. E-L eq. with fixed boundary condition 
for a unidirectional planar cell

Let us consider the NLC 5CB, having positive dielectric

anisotropy, filling a cell with initial alignment unidirectional

planar  along y-axis

z

y☉xd
ϑ(z)=00

z1= -d/2

z2= d/2
P

and strong anchoring: ϑ1 =ϑ(z1)=0, ϑ2 =ϑ(z2)=0, ϑ

being the angle between the director and y-axis.
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C
5
H

11 CN

5CB: 4’amylcyanobiphenyl, achieved 

1972 by George Gray, Univ of Hull

The compound

presents nematic phase at room 
temperature, and exhibits εa > 0
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By applying a magnetic field       normal to the cell plates H

z

y☉xd

ϑ(z)
0

z1= -d/2

z2= d/2
P

H

the director is, as already stated:

ϑϑ sincos kjn += (14’)
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The interaction free energy density between magnetic field 

and director reads

ϑχµχµ 222
sin

2

1
)(

2

1
HnHf maomaoH −=⋅−= (20*)

Comparing (20*) with (20’), we remember here that the 

magnetic free energy density corresponds to the electric one 

just substituting 

whereas the elastic contribution remains unchanged.

the same geometry providing the same ϑ-trigonometric function,  

"withandwith" ea HEmaoaooao χµµµχεεε == (31)
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[ ]ϑχµϑϑϑ 222

33

2

11

2
sin)sincos('

2

1
HKKf mao++= (20**)

This means that the total free energy density is

and consequently the E-L eq. is

[ ] 02sin)('
2

1

)sincos(''

2

3311

2

2

33

2

11

=−+−−+

++−

θχµϑ

ϑϑθ

HKK

KK

mao
(24*)

with strong anchoring unidirectional planar boundary 

conditions.
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Linearizing close to the threshold, when ϑ →0 also ϑ ’ →0, then

(24’) reads:

0''
2

11 =+ ϑχµϑ HK mao
(25*)

becoming the canonic pendulum eq.:

where

0''
2

=+ ϑϑ Ph (26*)

H
K

h mao
P

11

χµ
≡ (27*)

2.3.3. Threshold for splay magnetic 
Frederiks transition with strong anchoring
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Then the arising distortion is as usual harmonic, and the 

boundary conditions (strong anchoring) imply

zhPo cosϑϑ = (28*)

being the cell thickness d = λ/2 .

z

ϑ(z)
0

z

y☉xd

ϑ(z)
0

z1= -d/2

z2= d/2
P

H

ϑ(z)

P
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Finally,

π=dhP (29*)

gives the critical field for the arising of the magnetic Frederiks

transition (1st one discovered, 1927) in unidirectional planar 

NLC cells

mao

crit

K
H

χµ
11

d

π
= (30*)
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The relevant 5CB data are K11 = 6.2*10-12N, χma = 1.43*10-6 . 

The vacuum permeability is µo = 4π*10-7. 

Let be the cell thickness d = 10 µm. 

We note that, as for electric field, the magnetic threshold has 

been found inversely proportional to the cell thickness

We obtain Hcrit = 5.835*105 A/m = 0.5835 A/µm

mao

crit

K
H

χµ
11

d

π
= (30*’)
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What about GS ? Dealing with it, we would have found instead 

of (30*) the result

ma

crit

K
H

χ
11

d

π
= (30*’)

where to put K11= 6.2*10-7 dyn , χma = 1.14*10-7 (NOT the 

same value as in SI, but that one shared by 4π), with the 

same cell thickness, obtaining

Hcrit = 3.25*10-3 Oe

and, since , eventually getting the same

result as found before in SI

(provided you didn’t do some mistake!):

Hcrit = 0.5830 A/µm

m

A
10

4

1
Oe1

3

π
=

2.3.4. Always pay attention to Gaussian System!

alfredo.strigazzi@polito.it
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2.1. Conclusions

•The extremal of a LC-cell free energy determines 

the Euler-Lagrange eq.

•Solving E-L eq. it gets the director profile

•The elastic free energy density of a homeotropic

NLC cell with in-plane distortion involves splay and 

bend
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2.2. Conclusions

•A homeotropic NLC cell undergoes an electric Frederik
transition with field normal to the cell plates only if the NLC 

has permittivity anisotropy εa < 0

•The interaction NLC-electric field involves a free energy

density quadratic with the field

•The threshold of Frederiks transition in a homeotropic

NLC cell is determined by the bend elastic constant

•Always use the International System of measurement (SI) 
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2.3. Conclusions

•A unidirectional planar NLC cell undergoes a magnetic 
Frederik transition with field normal to the cell plates only if 

the NLC has permeability anisotropy µa > 0

•The interaction NLC-magnetic field involves a free energy

density quadratic with the field (like the interaction with

electric field as well)

•Mark the logic symmetry between magnetic and electric

field:

•The threshold of Frederiks transition in a unidirectional
planar NLC cell is determined by the splay elastic constant

•Forget using the Gaussian System of measurement (GS), 

especially when dealing with magnetism !

"withandwith" HE
maoaoeaoao

χµµµχεεε ==
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